Abstract
The development of molecular catalysts for CO 2 electroreduction within electrolyzers requests their immobilization on the electrodes. While a variety of methods have been explored for the heterogenization of homogeneous complexes, a novel approach using a hierarchical porous carbon material, derived from a metal-organic framework, is reported as a support for the well-known molecular catalyst [Re(bpy)(CO) 3 Cl] (bpy=2,2'-bipyridine). This cathodic hybrid material, named Re@HPC (HPC=hierarchical porous carbon), has been tested for CO 2 electroreduction using a mixture of an ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate, EMIM) and water as the electrolyte. Interestingly, it catalyzes the conversion of CO 2 into a mixture of carbon monoxide and formic acid, with a selectivity that depends on the applied potential. The present study thus reveals that Re@HPC is a remarkable catalyst, enjoying excellent activity (turnover numbers for CO 2 reduction of 7835 after 2 h at -1.95 V vs. Fc/Fc + with a current density of 6 mA cm -2 ) and good stability. These results emphasize the advantages of integrating molecular catalysts onto such porous carbon materials for developing novel, stable and efficient, catalysts for CO 2 reduction.
Original language | English |
---|---|
Pages (from-to) | 6418-6425 |
Number of pages | 8 |
Journal | ChemSusChem |
Volume | 13 |
Issue number | 23 |
Early online date | 25 Sept 2020 |
DOIs | |
Publication status | Published - 7 Dec 2020 |
Keywords
- catalysis
- CO electroreduction
- heterogenization
- hierarchical porous carbon
- ionic liquid
- rhenium complex
Fingerprint
Dive into the research topics of 'Immobilization of a Molecular Re Complex on MOF-derived Hierarchical Porous Carbon for CO2 Electroreduction in Water/Ionic Liquid Electrolyte'. Together they form a unique fingerprint.Equipment
-
Morphology - Imaging
Cecchet, F. (Manager) & Renard, H.-F. (Manager)
Technological Platform Morphology - ImagingFacility/equipment: Technological Platform
-
Physical Chemistry and characterization(PC2)
Wouters, J. (Manager), Aprile, C. (Manager) & Fusaro, L. (Manager)
Technological Platform Physical Chemistry and characterizationFacility/equipment: Technological Platform