High resolution imaging with differential infrared absorption micro-spectroscopy

Isabel Pita, Nordine Hendaoui, Ning Liu, Mahendar Kumbham, Syed A M Tofail, André Peremans, Christophe Silien

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Although confocal infrared (IR) absorption micro-spectroscopy is well established for far-field chemical imaging, its scope remains restricted since diffraction limits the spatial resolution to values a little above half the radiation wavelength. Yet, the successful implementations of below-the-diffraction limit far-field fluorescence microscopies using saturated irradiation patterns for example for stimulated-emission depletion and saturated structured-illumination suggest the possibility of using a similar optical patterning strategy for infrared absorption mapping at high resolution. Simulations are used to show that the simple mapping of the difference in transmitted/reflected IR energy between a saturated vortexshaped beam and a Gaussian reference with a confocal microscope affords the generation of high-resolution vibrational absorption images. On the basis of experimentally relevant parameters, the simulations of the differential absorption scheme reveal a spatial resolution better than a tenth of the wavelength for incident energies about a decade above the saturation threshold. The saturated structured illumination concepts are thus expected to be compatible with the establishment of point-like point-spread functions for measuring the absorbance of samples with a scanning confocal microscope recording the differential transmission/reflection.

    Original languageEnglish
    Pages (from-to)25632-25642
    Number of pages11
    JournalOptics Express
    Volume21
    Issue number22
    DOIs
    Publication statusPublished - 4 Nov 2013

    Fingerprint

    Dive into the research topics of 'High resolution imaging with differential infrared absorption micro-spectroscopy'. Together they form a unique fingerprint.

    Cite this