Projects per year

## Abstract

The computational problem of determining the projection of a given symmetric matrix onto the subspace of symmetric matrices that have a fixed sparsity pattern is considered. This projection is performed with respect to a weighted Frobenius norm involving a metric that is not diagonal. It is shown that the solution to this question is computationally feasible when the metric appearing in the norm is a low rank modification to the identity. Also, generalization to perturbations of higher rank is shown to be increasingly costly in terms of computation.

Original language | English |
---|---|

Pages (from-to) | 125-129 |

Number of pages | 5 |

Journal | Mathematical Programming |

Volume | 25 |

Issue number | 1 |

Publication status | Published - 1 Jan 1983 |

## Fingerprint Dive into the research topics of 'Forcing Sparsity By Projecting With Respect To A Non-Diagonally-Weighted Frobenius Norm.'. Together they form a unique fingerprint.

## Projects

- 1 Active