TY - JOUR
T1 - Escape from immune surveillance by Capnocytophaga canimorsus
AU - Shin, Hwain
AU - Mally, Manuela
AU - Kuhn, Marina
AU - Paroz, Cecile
AU - Cornelis, Guy R
PY - 2007
Y1 - 2007
N2 - Capnocytophaga canimorsus, a commensal bacterium from dogs' mouths, can cause septicemia or meningitis in humans through bites or scratches. Here, we describe and characterize the inflammatory response of human and mouse macrophages on C. canimorsus infection. Macrophages infected with 10 different strains failed to release tumor necrosis factor (TNF)- alpha and interleukin (IL)-1 alpha . Macrophages infected with live and heat-killed (HK) C. canimorsus 5 (Cc5), a strain isolated from a patient with fatal septicemia, did not release IL-6, IL-8, interferon- gamma , macrophage inflammatory protein-1 beta , and nitric oxide (NO). This absence of a proinflammatory response was characterized by the inability of Toll-like receptor (TLR) 4 to respond to Cc5. Moreover, live but not HK Cc5 blocked the release of TNF- alpha and NO induced by HK Yersinia enterocolitica. In addition, live Cc5 down-regulated the expression of TLR4 and dephosphorylated p38 mitogen-activated protein kinase. These results highlight passive and active mechanisms of immune evasion by C. canimorsus, which may explain its capacity to escape from the host immune system.
AB - Capnocytophaga canimorsus, a commensal bacterium from dogs' mouths, can cause septicemia or meningitis in humans through bites or scratches. Here, we describe and characterize the inflammatory response of human and mouse macrophages on C. canimorsus infection. Macrophages infected with 10 different strains failed to release tumor necrosis factor (TNF)- alpha and interleukin (IL)-1 alpha . Macrophages infected with live and heat-killed (HK) C. canimorsus 5 (Cc5), a strain isolated from a patient with fatal septicemia, did not release IL-6, IL-8, interferon- gamma , macrophage inflammatory protein-1 beta , and nitric oxide (NO). This absence of a proinflammatory response was characterized by the inability of Toll-like receptor (TLR) 4 to respond to Cc5. Moreover, live but not HK Cc5 blocked the release of TNF- alpha and NO induced by HK Yersinia enterocolitica. In addition, live Cc5 down-regulated the expression of TLR4 and dephosphorylated p38 mitogen-activated protein kinase. These results highlight passive and active mechanisms of immune evasion by C. canimorsus, which may explain its capacity to escape from the host immune system.
U2 - 10.1086/510243
DO - 10.1086/510243
M3 - Article
C2 - 17205476
SN - 0022-1899
VL - 195
SP - 375
EP - 386
JO - The Journal of infectious diseases
JF - The Journal of infectious diseases
IS - 3
ER -