TY - JOUR
T1 - Differential scanning calorimetry in life science
T2 - Thermodynamics, stability, molecular recognition and application in drug design
AU - Bruylants, G.
AU - Wouters, J.
AU - Michaux, Catherine
PY - 2005/8/1
Y1 - 2005/8/1
N2 - All biological phenomena depend on molecular recognition, which is either intermolecular like in ligand binding to a macromolecule or intramolecular like in protein folding. As a result, understanding the relationship between the structure of proteins and the energetics of their stability and binding with others (bio)molecules is a very interesting point in biochemistry and biotechnology. It is essential to the engineering of stable proteins and to the structure-based design of pharmaceutical ligands. The parameter generally used to characterize the stability of a system (the folded and unfolded state of the protein for example) is the equilibrium constant (K) or the free energy (ΔG°), which is the sum of enthalpic (ΔH°) and entropic (ΔS°) terms. These parameters are temperature dependent through the heat capacity change (ΔCp). The thermodynamic parameters ΔH° and ΔCp can be derived from spectroscopic experiments, using the van't Hoff method, or measured directly using calorimetry. Along with isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC) is a powerful method, less described than ITC, for measuring directly the thermodynamic parameters which charaterize biomolecules. In this article, we summarize the principal thermodynamics parameters, describe the DSC approach and review some systems to which it has been applied. DSC is much used for the study of the stability and the folding of biomolecules, but it can also be applied in order to understand biomolecular interactions and can thus be an interesting technique in the process of drug design.
AB - All biological phenomena depend on molecular recognition, which is either intermolecular like in ligand binding to a macromolecule or intramolecular like in protein folding. As a result, understanding the relationship between the structure of proteins and the energetics of their stability and binding with others (bio)molecules is a very interesting point in biochemistry and biotechnology. It is essential to the engineering of stable proteins and to the structure-based design of pharmaceutical ligands. The parameter generally used to characterize the stability of a system (the folded and unfolded state of the protein for example) is the equilibrium constant (K) or the free energy (ΔG°), which is the sum of enthalpic (ΔH°) and entropic (ΔS°) terms. These parameters are temperature dependent through the heat capacity change (ΔCp). The thermodynamic parameters ΔH° and ΔCp can be derived from spectroscopic experiments, using the van't Hoff method, or measured directly using calorimetry. Along with isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC) is a powerful method, less described than ITC, for measuring directly the thermodynamic parameters which charaterize biomolecules. In this article, we summarize the principal thermodynamics parameters, describe the DSC approach and review some systems to which it has been applied. DSC is much used for the study of the stability and the folding of biomolecules, but it can also be applied in order to understand biomolecular interactions and can thus be an interesting technique in the process of drug design.
KW - ΔCp
KW - ΔH°
KW - Binding
KW - Calorimetry
KW - DSC
KW - Stability
KW - Thermodynamics
UR - http://www.scopus.com/inward/record.url?scp=22544442178&partnerID=8YFLogxK
U2 - 10.2174/0929867054546564
DO - 10.2174/0929867054546564
M3 - Article
C2 - 16101501
AN - SCOPUS:22544442178
SN - 0929-8673
VL - 12
SP - 2011
EP - 2020
JO - Current Medicinal Chemistry
JF - Current Medicinal Chemistry
IS - 17
ER -