Development of Al-5%Zn-0.5%Sn-2.6%Mg Alloy as Sacrificial Anode for Cathodic Protection of Steel in 3 wt.% NaCl Solution

Cilya Oulmas, Sonia Mameri, Dalila Boughrara, Slimane Boutarfaia, Joseph Delhalle, Zineb Mekhalif, Abdelaziz Kadri

Research output: Contribution to journalArticlepeer-review

Abstract

In this work, two aluminum alloys, Al-5Zn-0.5Sn and Al-5Zn-0.5Sn-2.6Mg, were prepared by melting in an induction furnace to be used as sacrificial anodes for cathodic protection of marine structures. The alloys are characterized by scanning electron microscopy mapping coupled to energy dispersive X-ray analysis, X-ray photoelectron spectroscopy and X-ray diffraction. Afterwards, the corrosion behavior was studied in 3 wt.% NaCl solution through immersion tests, potentiodynamic polarization, electrochemical impedance spectroscopy and weight-loss measurements. Results display that active dissolution of Al-5%Zn-0.5%Sn-2.6%Mg alloy and its quasi-uniform corrosion is associated with the major precipitates MgZn2 and Mg2Sn particles formed during the melting process. Galvanic coupling measurements over 45 d were carried out on both alloys. The sacrificial cathodic protection of both anodes was successful but the couple efficiency was greater for Al-Zn-Sn-Mg owing to its more negative corrosion potential and uniform dissolution.

Original languageEnglish
Article number031514
JournalJournal of the electrochemical society
Volume168
Issue number3
DOIs
Publication statusPublished - Mar 2021

Fingerprint

Dive into the research topics of 'Development of Al-5%Zn-0.5%Sn-2.6%Mg Alloy as Sacrificial Anode for Cathodic Protection of Steel in 3 wt.% NaCl Solution'. Together they form a unique fingerprint.

Cite this