Abstract
A strategy to reduce critical raw metals in nanocatalysts is to synthesize nanocomposites based on defective or bimetallic nanoparticles deposition on carbon nanomaterials. Conventional solution-based methods suffer from the extensive use of solvents and difficult scalability. In this study, defective Pt–Ni nanoparticles are formed on graphene nanoplatelets thanks to an original approach based on simultaneous or sequential low-temperature oxygen plasma treatments of nickel and platinum acetylacetonates. The two processing conditions produce aggregated Pt–Ni nanoparticles with variable morphologies, size crystallinities, and oxidation states. The materials analytical characterizations show that the sequential treatment promotes small Pt–Ni particle aggregates nucleation, while the simultaneous treatment leads to complex interconnected Pt–Ni-based phases. Such defective nanoparticles are promising for multiple applications in catalysis and energy.
Original language | English |
---|---|
Article number | 1800203 |
Journal | Plasma Processes and Polymers |
Volume | 16 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1 May 2019 |
Keywords
- graphene
- low-pressure plasma treatment
- prganometallic
- Pt–Ni nanocomposites
Fingerprint
Dive into the research topics of 'Defective Pt–Ni/graphene nanomaterials by simultaneous or sequential treatments of organometallic precursors by low-pressure oxygen plasma'. Together they form a unique fingerprint.Equipment
-
Physical Chemistry and characterization(PC2)
Wouters, J. (Manager), Aprile, C. (Manager) & Fusaro, L. (Manager)
Technological Platform Physical Chemistry and characterizationFacility/equipment: Technological Platform
-
Synthesis, Irradiation and Analysis of Materials (SIAM)
Louette, P. (Manager), Colaux, J. (Manager), Felten, A. (Manager), Tabarrant, T. (Operator), COME, F. (Operator) & Debarsy, P.-L. (Manager)
Technological Platform Synthesis, Irradiation and Analysis of MaterialsFacility/equipment: Technological Platform