Projects per year
Abstract
A computational design of linearly extended multiple resonance (MR)-type BN molecules based on DABNA-1 is proposed herein in the quest to find potential candidates that exhibit a negative singlet-triplet gap (ΔEST) and a large oscillator strength value. The impact of a proper account of the electron correlation in the lowest singlet and triplet excited states is systematically investigated by using double-hybrid functionals within the TD-DFT framework, as well as wavefunction-based methods (EOM-CCSD and SCS-CC2), since this contribution plays an essential role in driving the magnitude of the ΔEST in MR-TADF and inverted singlet-triplet gap compounds. Our results point out a gradual reduction of the ΔEST gap with respect to the increasing sum of the number of B and N atoms, reaching negative ΔEST values for some molecules as a function of their size. The double-hybrid functionals reproduce the gap with only slight deviation compared to available experimental data for DABNA-1, ν-DABNA, and mDBCz and nicely agree with high-level quantum mechanical methods (e.g., EOM-CCSD and SCS-CC2). Larger oscillator strengths are found compared to the azaphenalene-type molecules, also exhibiting the inversion of their singlet and triplet excited states. We hope this study can serve as a motivation for further design of the molecules showing negative ΔEST based on boron- and nitrogen-doped polyaromatic hydrocarbons.
Original language | English |
---|---|
Pages (from-to) | 10189-10196 |
Number of pages | 8 |
Journal | The Journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
Volume | 127 |
Issue number | 48 |
DOIs | |
Publication status | Published - 7 Dec 2023 |
Fingerprint
Dive into the research topics of 'Computational Design of Multiple Resonance-Type BN Molecules for Inverted Singlet and Triplet Excited States'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Equipment renewal for the Consortium des Equipements de Calcul Intensif (CECI)
Bontempi, G. (PI), CHAMPAGNE, B. (CoPI), Geuzaine , C. (CoPI), RIGNANESE, G. M. (CoPI) & Lazzaroni, R. (CoPI)
1/01/22 → 31/12/23
Project: Research
Equipment
-
High Performance Computing Technology Platform
Champagne, B. (Manager)
Technological Platform High Performance ComputingFacility/equipment: Technological Platform