TY - JOUR
T1 - Complex structures arising from the self-assembly of a simple organic salt
AU - Montis, Riccardo
AU - Fusaro, Luca
AU - Falqui, Andrea
AU - Hursthouse, Michael B.
AU - Tumanov, Nikolay
AU - Coles, Simon J.
AU - Threlfall, Terry L.
AU - Horton, Peter N.
AU - Sougrat, Rachid
AU - Lafontaine, Anaïs
AU - Coquerel, Gérard
AU - Rae, A. David
N1 - Funding Information:
Acknowledgements We thank the UK Engineering and Physical Sciences Research Council for financial support for single-crystal diffraction facilities through funding of the UK National Crystallography Service. R.M. thanks R. Davey (The University of Manchester) for comments and discussions. We thank M. Sanselme (Université de Rouen Normandie) for help with in situ X-ray diffraction measurements. We thank the technological platform “Physico-Chemical Characterization” – PC2 (University of Namur) for providing resources used for this research.
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2021/2/11
Y1 - 2021/2/11
N2 - Molecular self-assembly is the spontaneous association of simple molecules into larger and ordered structures1. It is the basis of several natural processes, such as the formation of colloids, crystals, proteins, viruses and double-helical DNA2. Molecular self-assembly has inspired strategies for the rational design of materials with specific chemical and physical properties3, and is one of the most important concepts in supramolecular chemistry. Although molecular self-assembly has been extensively investigated, understanding the rules governing this phenomenon remains challenging. Here we report on a simple hydrochloride salt of fampridine that crystallizes as four different structures, two of which adopt unusual self-assemblies consisting of polyhedral clusters of chloride and pyridinium ions. These two structures represent Frank–Kasper (FK) phases of a small and rigid organic molecule. Although discovered in metal alloys4,5 more than 60 years ago, FK phases have recently been observed in several classes of supramolecular soft matter6–11 and in gold nanocrystal superlattices12 and remain the object of recent discoveries13. In these systems, atoms or spherical assemblies of molecules are packed to form polyhedra with coordination numbers 12, 14, 15 or 16. The two FK structures reported here crystallize from a dense liquid phase and show a complexity that is generally not observed in small rigid organic molecules. Investigation of the precursor dense liquid phase by cryogenic electron microscopy reveals the presence of spherical aggregates with sizes ranging between 1.5 and 4.6 nanometres. These structures, together with the experimental procedure used for their preparation, invite interesting speculation about their formation and open different perspectives for the design of organic crystalline materials.
AB - Molecular self-assembly is the spontaneous association of simple molecules into larger and ordered structures1. It is the basis of several natural processes, such as the formation of colloids, crystals, proteins, viruses and double-helical DNA2. Molecular self-assembly has inspired strategies for the rational design of materials with specific chemical and physical properties3, and is one of the most important concepts in supramolecular chemistry. Although molecular self-assembly has been extensively investigated, understanding the rules governing this phenomenon remains challenging. Here we report on a simple hydrochloride salt of fampridine that crystallizes as four different structures, two of which adopt unusual self-assemblies consisting of polyhedral clusters of chloride and pyridinium ions. These two structures represent Frank–Kasper (FK) phases of a small and rigid organic molecule. Although discovered in metal alloys4,5 more than 60 years ago, FK phases have recently been observed in several classes of supramolecular soft matter6–11 and in gold nanocrystal superlattices12 and remain the object of recent discoveries13. In these systems, atoms or spherical assemblies of molecules are packed to form polyhedra with coordination numbers 12, 14, 15 or 16. The two FK structures reported here crystallize from a dense liquid phase and show a complexity that is generally not observed in small rigid organic molecules. Investigation of the precursor dense liquid phase by cryogenic electron microscopy reveals the presence of spherical aggregates with sizes ranging between 1.5 and 4.6 nanometres. These structures, together with the experimental procedure used for their preparation, invite interesting speculation about their formation and open different perspectives for the design of organic crystalline materials.
UR - http://www.scopus.com/inward/record.url?scp=85101053652&partnerID=8YFLogxK
U2 - 10.1038/s41586-021-03194-y
DO - 10.1038/s41586-021-03194-y
M3 - Article
SN - 0028-0836
VL - 590
SP - 275
EP - 278
JO - Nature
JF - Nature
IS - 7845
ER -