Chemical environment and functional properties of highly crystalline ZnSnN2 thin films deposited by reactive sputtering at room temperature

Fahad Alnjiman, Sébastien Diliberto, Jaafar GHANBAJA, Emile Haye, Spiros Kassavetis, Panos Patsalas, Christine Gendarme, Stéphanie Bruyère, Franck Cleymand, Patrice MISKA, Pascal Boulet, Jean-François PIERSON

Research output: Contribution to journalArticlepeer-review

Abstract

Zinc tin nitride (ZnSnN2) thin films have been deposited on glass and silicon substrates using a reactive cosputtering process. Although the deposition temperature was limited to the room temperature, the films show a highly crystallization level and a strong preferred orientation in the [001] direction. The film composition, measured using energy dispersive X-ray spectroscopy and electron probe microanalysis, indicates a possible tin understoichiometry (or a zinc and a nitrogen overstoichiometry). As confirmed by transmission electron microscopy, the main oxygen contamination of the films results from oxidation of the grains boundaries after air exposure of the samples. X-ray photoelectron spectroscopy and Mössbauer spectrometry have been used to determine the chemical environment of atoms in the ZnSnN2 crystals. Both methods confirm that Sn4+ ions are bonded to nitrogen atoms and that the oxygen contamination results in the formation of Sn2+ ions. Zinc tin nitride exhibit an electron mobility at room temperature close to 3.8 cm2 V−1 s−1 and an optical band gap of 1.8 eV as measured independently from UV–visible spectrometry and ellipsometry. The results obtained in the present study confirm the suitability of ZnSnN2 thin films as an Earth abundant material for absorber layer in photovoltaic devices.
Original languageEnglish
Pages (from-to)30-36
Number of pages7
JournalSolar Energy Materials and Solar Cells
Volume182
DOIs
Publication statusPublished - 1 Aug 2018

Keywords

  • ZnSnN2
  • structure
  • Mössbauer spectrometry
  • optical and electrical properties
  • ZnSnN
  • Optical and electrical properties
  • Structure

Fingerprint

Dive into the research topics of 'Chemical environment and functional properties of highly crystalline ZnSnN2 thin films deposited by reactive sputtering at room temperature'. Together they form a unique fingerprint.

Cite this