Abstract
Stress response to fluctuating environments often implies a time-consuming reprogramming of gene expression. In bacteria, the so-called bet hedging strategy, which promotes phenotypic stochasticity within a cell population, is the only fast stress response described so far 1. Here, we show that Caulobacter crescentus asymmetrical cell division allows an immediate bimodal response to a toxic metals-rich environment by allocating specific defence strategies to morphologically and functionally distinct siblings. In this context, a motile swarmer cell favours negative chemotaxis to flee from a copper source, whereas a sessile stalked sibling engages a ready-to-use PcoAB copper homeostasis system, providing evidence of a prompt stress response through intrinsic bacterial dimorphism.
Original language | English |
---|---|
Article number | 16098 |
Journal | Nature Microbiology |
Volume | 1 |
Issue number | 9 |
DOIs | |
Publication status | Published - 4 Jul 2016 |
Fingerprint
Dive into the research topics of 'Caulobacter crescentus intrinsic dimorphism provides a prompt bimodal response to copper stress'. Together they form a unique fingerprint.Equipment
-
Morphology - Imaging
Cecchet, F. (Manager) & Renard, H.-F. (Manager)
Technological Platform Morphology - ImagingFacility/equipment: Technological Platform