Abstract
The severe shuttling behavior in the discharging-charging process largely hampers the commercialization of lithium-sulfur (Li-S) batteries. Herein, we design a bifunctional separator with an ultra-lightweight MnO2 coating to establish strong chemical adsorption barriers for shuttling effect alleviation. The double-sided polar MnO2 layers not only trap the lithium polysulfides through extraordinary chemical bonding but also ensure the uniform Li+ flux on the lithium anode and inhibit the side reaction, resulting in homogeneous plating and stripping to avoid corrosion of the Li anode. Consequently, the assembled Li-S battery with the MnO2-modified separator retains a capacity of 665 mA h g-1 at 1 C after 1000 cycles at the areal sulfur loading of 2.5 mg cm-2, corresponding to only 0.028% capacity decay per cycle. Notably, the areal loading of ultra-lightweight MnO2 coating is as low as 0.007 mg cm-2, facilitating the achievement of a high energy density of Li-S batteries. This work reveals that the polar metal oxide-modified separator can effectively inhibit the shuttle effect and protect the Li anode for high-performance Li-S batteries.
Original language | English |
---|---|
Pages (from-to) | 6877-6887 |
Number of pages | 11 |
Journal | ACS Applied Materials & Interfaces |
Volume | 15 |
Issue number | 5 |
DOIs | |
Publication status | Published - 8 Feb 2023 |
Keywords
- chemical adsorption
- Li dendrites
- lithium-sulfur batteries
- MnO
- shuttling effect
Fingerprint
Dive into the research topics of 'Bifunctional Separator with Ultra-Lightweight MnO2Coating for Highly Stable Lithium-Sulfur Batteries'. Together they form a unique fingerprint.Equipment
-
Physical Chemistry and characterization(PC2)
Wouters, J. (Manager), Aprile, C. (Manager) & Fusaro, L. (Manager)
Technological Platform Physical Chemistry and characterizationFacility/equipment: Technological Platform