Projects per year
Abstract
We investigate the axial ligand effects on the diradical character (y) dependences of the second hyperpolarizabilities (γ) of transition-metal dinuclear complexes, Mo(I)2(CO)2, with different bond lengths (R) using the spin-unrestricted coupled-cluster method. Mo(I) 2(CO)2 exhibits intrinsic y-γ correlation and dominant dσ-electron contribution to the maximum γ (γmax), which are also observed in the bare dinuclear analogs. The axial-ligand coordination to Mo(I)2 is found to cause the increase of the diradical character of the dσ orbital, the emergence of large negative γ for small R, and an enhancement of |γ max| by a factor of ∼30 as compared to the bare analogs.
Original language | English |
---|---|
Pages (from-to) | 68-73 |
Number of pages | 6 |
Journal | Chemical Physics Letters |
Volume | 608 |
DOIs | |
Publication status | Published - 2014 |
Fingerprint
Dive into the research topics of 'Axial ligand effects on the diradical characters and second hyperpolarizabilities of open-shell singlet transition-metal dinuclear complexes'. Together they form a unique fingerprint.Projects
- 2 Finished
-
PAI n°P7/05 - FS2: Functional Supramolecular Systems (FS2)
CHAMPAGNE, B., De Vos, D., Van der Auweraer, M., Jérôme, C., Lazzaroni, R., Marin, G., Jonas, A., Du Prez, F., Vanderzande, D., Van Tendeloo, G., Van Speybroeck, V., NENON, S. & STAELENS, N.
1/04/12 → 30/09/17
Project: Research
-
TINTIN - ARC 09/14-23: Molecular TINkertoys for OpToelectronics and SpINtronics - TINTIN
BONIFAZI, D., CHAMPAGNE, B., FORENSI, S., SEGERIE, A. & Melinte, S.
1/09/09 → 31/08/14
Project: Research
Equipment
-
High Performance Computing Technology Platform
Benoît Champagne (Manager)
Technological Platform High Performance ComputingFacility/equipment: Technological Platform