TY - JOUR
T1 - Assessing filtration rates of exotic bivalves
T2 - dependence on algae concentration and seasonal factors
AU - Marescaux, Jonathan
AU - Falisse, Élodie
AU - Lorquet, Julien
AU - Van Doninck, Karine
AU - BEISEL, Jean-Nicolas
AU - Descy, Jean-Pierre
PY - 2016/4/15
Y1 - 2016/4/15
N2 - Due to their high filtration rates, exotic freshwater bivalves remove suspended organic matter from the water column, transferring resources to the sediment and increasing water clarity, which alters ecosystems. While there is a considerable amount of data on filtration rate of exotic bivalves, comparison between species is often invalid due to the utilization of different protocols for assessing filtration in experimental conditions. In this study, we quantified and compared for the first time the filtration rates of the zebra and quagga mussels and of two invasive Corbicula lineages (forms R and S) as a function of chlorophyll a concentration and season. The highest filtration rate observed was for the zebra mussel in fall and at high algal biomass. The incipient limiting level (ILL), defined as the chlorophyll a concentration at which the maximum filtration rate is observed, was observed in spring and summer in Corbicula species, and in summer and fall in Dreissena species. Overall, filtration rates presented a large range of variation, depending on chlorophyll a and season. Overall, Corbicula form S was observed as the best adapted to low food concentration. Moreover, Corbicula can switch to pedal feeding which gives them a competitive advantage at low chlorophyll a concentrations.
AB - Due to their high filtration rates, exotic freshwater bivalves remove suspended organic matter from the water column, transferring resources to the sediment and increasing water clarity, which alters ecosystems. While there is a considerable amount of data on filtration rate of exotic bivalves, comparison between species is often invalid due to the utilization of different protocols for assessing filtration in experimental conditions. In this study, we quantified and compared for the first time the filtration rates of the zebra and quagga mussels and of two invasive Corbicula lineages (forms R and S) as a function of chlorophyll a concentration and season. The highest filtration rate observed was for the zebra mussel in fall and at high algal biomass. The incipient limiting level (ILL), defined as the chlorophyll a concentration at which the maximum filtration rate is observed, was observed in spring and summer in Corbicula species, and in summer and fall in Dreissena species. Overall, filtration rates presented a large range of variation, depending on chlorophyll a and season. Overall, Corbicula form S was observed as the best adapted to low food concentration. Moreover, Corbicula can switch to pedal feeding which gives them a competitive advantage at low chlorophyll a concentrations.
U2 - 10.1007/s10750-016-2764-0
DO - 10.1007/s10750-016-2764-0
M3 - Article
SN - 0018-8158
JO - Hydrobiologia
JF - Hydrobiologia
ER -