锌掺杂NiCoP多孔双层阵列电极材料的制备及电催化产氢性能

Translated title of the contribution: Synthesis of Zn-Doped NiCoP Catalyst with Porous Double-layer Nanoarray Structure and Its Electrocatalytic Properties for Hydrogen Evolution

Yaqiang Wu, Siming Liu, Shunjin Jin, Yongqing Yan, Zhao Wang, Lihua Chen, Baolian Su

Research output: Contribution to journalArticlepeer-review

Abstract

NiCoP is wildly accepted as one of the most potential catalysts for electrocatalytic hydrogen evolution reaction(HER) due to its high catalytic efficiency and low cost. However, the hydrogen bubble formation over catalyst surface during HER largely decreases the catalytic active sites and slows the mass transportation of electrolyte, resulting in a limited catalytic performance. In this paper, Zn-doped NiCoP catalyst with porous double-layer array structure on foam nickel was constructed by hydrothermal, followed with in-situ phospha-ting and HCl selective etching. Compared with the traditional single-layer array, the top nanoleaves array distributes uniformly on the bottom nanowires array, which maximizes the exposed catalytic active sites and provides a larger contact area for electrolyte. Moreover, the porous hierarchy also accelerates hydrogen bubble's release. As a result, the optimized H-Zn-NiCo-P shows high electrocatalytic activity in alkaline electrolyte (1 mol/L KOH), with overpotentials of 59 and 156 mV at the current densities of 10 and 100 mA/cm2, respectively. The Tafel slope is 66 mV/dec and it shows excellent electrochemical stability. This research provides new ideas and solutions for the development of electrocatalysts with novel array structure.

Translated title of the contributionSynthesis of Zn-Doped NiCoP Catalyst with Porous Double-layer Nanoarray Structure and Its Electrocatalytic Properties for Hydrogen Evolution
Original languageChinese (Traditional)
Pages (from-to)2483-2492
Number of pages10
JournalGaodeng Xuexiao Huaxue Xuebao/Chemical Journal of Chinese Universities
Volume42
Issue number8
DOIs
Publication statusPublished - 10 Aug 2021

Keywords

  • Double-layer array
  • Electrocatalyst
  • Hydrogen evolution reaction
  • Porous structure
  • Zn doping

Fingerprint

Dive into the research topics of 'Synthesis of Zn-Doped NiCoP Catalyst with Porous Double-layer Nanoarray Structure and Its Electrocatalytic Properties for Hydrogen Evolution'. Together they form a unique fingerprint.

Cite this